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Scattering from underground tunnels? 
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147, Greece 
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Abstract. The scattering of electromagnetic waves from underground tunnels is investi- 
gated analytically. A Green function approach is employed to formulate the problem for 
horizontally polarised incident waves. This approach results in an integral equation for the 
unknown interior field E ( r )  for the buried scatterer region. Expansion of the unknown E(r )  
field in terms of cylindrical wavefunctions in conjunction with the basic integral equation 
leads to an infinite set of linear equations. An analytical procedure is developed to decouple 
this system of equations when the excessive phaseshift inside the scattering region is small. 
This determines the inner field E ( r )  of the scatterer. In order to compute the scattered field 
for the far-field region a steepest descent integration technique is employed. Numerical 
results are obtained for several cases and are presented. 

1. Introduction 

Detection and identification of underground inhomogeneities with electromagnetic 
probing methods is an area of current interest (Burrell and Peters 1979, Chan et a1 
1979). An interesting problem in this area is the identification of tunnels and under- 
ground pipes. 

Several techniques are employed to obtain information for buried inhomogeneities 
such as the short video pulse method (Sullivan 1970), use of extremely low frequencies 
(Cauterman et a1 1979), the transient response method (Mahmoud et a1 1979, Lee 
1979) and finally passive detection techniques by observing the anomalies of the 
geomagnetic field (Tikhonov 1950, Wait 1962). Apart from the attenuation of the 
waves, due to the finite conductivity of the soil, the very complex electromagnetic 
structure of the ground environment complicates the problem of the detection of the 
buried scatterers to a great extent. The former problem, i.e. the attenuation of echo 
signals, can be tackled by using higher transmission power levels, lower frequencies or 
signal processing techniques. The latter problem is much more complex because of the 
high clutter energy returning from the ground environment. Therefore, prior to any 
experiment, it is useful to have a priori quantitive information on the scattered field 
from possible underground targets. This requires a good knowledge of the interaction 
of electromagnetic waves impinging from the air with geological media. 

In this paper, scattering from buried infinite cylinders is investigated analytically. 
The geometry of the problem is defined in figure 1 where D is the depth of the 
cylindrical scatterer axis from the earth surface, a is the cylinder radius and nl ,  n2 are 
the complex refractive indices for the ground and scatterer regions. The free space 
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Figure 1. Geometry of the scattering from an underground cylindrical tunnel 

wavenumber for y > 0 (air) is shown by ko and the whole space is assumed to be 
magnetically homogeneous with a magnetic permeability of the free space cc. = = 

477 x H m-’. 
An integral equation approach is used to formulate the corresponding boundary 

value problem for an electromagnetic plane wave impinging from the air. The incident 
wave direction is assumed to be perpendicular to the cylinder axis. In this paper only 
horizontally polarised waves are considered. Techniques similar to those of the present 
work can be employed to treat the case of vertically polarised waves. The analysis starts 
with the application of Green’s theorem which results in an integral equation for the 
unknown interior electric field E ( r )  of the buried scattering region. Expansion of the 
unknown interior field E ( r )  in terms of the circular cylindrical wavefunctions and 
substitution of this into the integral equations results in an infinite set of coupled 
equations. In order to solve this system of equations, an approximate decoupling 
procedure is developed when koa In2 - rill < 1. This determines the unknown field E(r )  
as a power series in koa(n2-nl ) .  Finally the scattered field is computed in the air (for 
y > 0) employing the method of steepest descent. Numerical results are obtained and 
presented for the upper band of high (HF) and very high (VHF) frequencies for several 
ground types (n l  values), scatterer dimensions and refractive indices (n2). In the 
following analysis the time dependence for the field is assumed to be exp(-i2wft) and is 
suppressed throughout the analysis. 

2. Formulation of the mathematical problem 

A Green function approach is employed to formulate the corresponding boundary 
value problem. To this end, the Green function in the absence of the ground scatterer 
(i.e. n2 = n l )  is determined for a unit line source. Assuming the primary excitation to be 
located inside the earth (y’ < 0) the Green function is the solution of the equation 

(V2 + k 2 ( r ) ) G (  r 1 r’)  = - S ( r  - r ’ )  iii 
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where r = x i  + yf and rf  = x‘X* + y‘f are the line source coordinates as shown in figure 1 
and 

ko for y > O  
for y <O. k(r) = I ,tonl 

In addition to equation (l), as the Green function is the z component of the electric 
field, it should satisfy the appropriate boundary conditions on the earth-air interface at 
y = 0. To this end a method due to Sommerfeld (1949) is used as follows. Since the 
primary excitation is inside the ground ( y ’ C 0 )  the total field G(r1r’) for the air and 
earth regions can be written as 

where Go(r) = $Hi” (kllr - r’l) is the free space (primary source) Green function where 
kl = konl and Ho(x)  is the zeroth-order cylindrical Hankel function. Gl(r) and GAr) 
are the induced electric fields for y < 0 and y > 0 respectively. Considering the solution 
of the wave equation (1) these are expressed as Fourier integrals 

Gl(r) = (eWlYA(A)/pd Y < O  (3) 

GAr) = (e-’OYB(A)/pd Y > O  (4) 
where the bracket operator is defined as 

1 r+O0 

(a> =I J dA exp[iA (x - x ’ ) ] Q ( A ) .  477 -a ( 5 )  

2 1/2 
gi = ( A 2  - ki ) 
Expressing the free space term as (Sommerfeld 1949) 

for j = 0 , l  and A(A), B(A) are unknown coefficients to be determined. 

G d r )  = (exp(-mly - yfl/cL1)) 

Go(xi) + Gl(xi) = G~(xX*) 
(6 )  

(7) 

The secondary field coefficients are 

CL1 -CL0 e*,y’ 2P 1 A(A) = - B(A) = - e”ly’. 
Pl+PO Pl+PO 

(9) 

Let us assume now that a plane wave is incident from the air on the earth’s surface as 
shown in figure 1. The incident wavevector ki = ko(-cos of -sin my*) is assumed to be 
perpendicular to the z axis. 

If no scatterer existed inside the earth, then the total field would be given in terms of 
the Fresnel coefficients as 

exp[-ikop cos(cp - U ) ]  + Rh exp[-ikop cos(cp + w)l  
(I +&) exp[-ikonlp cos(cp - U ’ ) ]  

Y > O  

Y < O  
*0= ( 

where 
cosof  1 sin w -dn; -cosz w 

sin w +Jn:  -cosz w cosw nl 
-=- Rh = 
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p = ( x 2  + Y’)’’~, q = tan-‘(y/x) are the polar coordinates and w is the angle between the 
- y  axis and incident direction. Since n 1  = ( E , ~  +icrl/wE0)1’2 is a complex quantity the 
angle w’ is also complex and is a function of the earth’s relative dielectric constant 
and conductivity 

If there is an inhomogeneity inside the earth then the field Qo of equation (10) is 
distorted because of the excitation of secondary sources inside the scattering region. 
This distortion of the field can be expressed in a compact form using Green’s theorem. 
Indeed, applying Green’s theorem for a circle of radius p of figure 1, we have 

N K Uzunoglu and J D Kanellopoulos 

where d n ’  = dx’ dy ’, 4 is the total electric field, Ap = A.  + A  + A2 is the area inside the 
circle and the contour co is the corresponding circumference. 

The fields (Q - Qo) and G originating from a finite scattering region and a line source 
should satisfy the Sommerfeld radiation conditions and both fields should decay as 1 / J p  
as p -+ +a (p  = ( x 2  + Y * ) ” ~ ) .  Thus going to the limit p + +a, the right-hand side of 
equation (1 1) vanishes. Substitution of the appropriate wave equations for 4, Qo and 
the functions G ( r  I r’) simplifies the left-hand side of equation (10) to 

A z  

In this equation the point r can be in any region (i.e. earth, scatterer or air). If the point r 
is restricted inside the inhomogeneity region AZ then equation (12) is an integral 
equation for the unknown field Q(r) .  It should be noted here that the shape of the 
inhomogeneity region A2 can be arbitrary although in the present treatment circular 
cross section scatterers only are considered. 

3. Evaluation of the interior field 

The inner field for the region A2 can be expanded in terms of cylindrical wavefunctions 
as 

where (r, 8) are the polar local coordinates (see figure 1) for the scattering region and 
are expressed in terms of the initial coordinates r as (see figure 1) 

(14) 

Substituting equations (13) and (10) into equation (12) ( r  E A2) ,  multiplying both sides 
with exp(-im0) and integrating from 8 = 0 to 27r we obtain 

27rC,,Jm(k2r) = (1 + R h )  exp(iklD sin w ’ )  

x = r cos 8 y = -D + r sin 8. 

2.77 

x Jo d8  exp[-imO -ikonlr cos(6 - w)] 
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Z?r Z T  

+ (k: - k:) d8  1: r’ dr’ [6,=o de’ exp(-im8) 
8=0 r - 0  

x (Go(r) + Gl(r)) (E CmJm,(k;zr’) exp(im’8’)) 
m’ 

where 

‘c“ . 
” “= -m 

Introducing equations (3) and (9) for Gl(r) ,  and employing the well known expansion of 
the free space Green function in terms of cylindrical wavefunctions as 

Go(r) = $iHo(kllr - r’l) = ai 1 J,, (klr<)Hn (klr,) exp[in (8 - e’)] (16) 

with r< = min(r, r’) and r, = max(r, r’), equation (15) after the integrations over 8 and 8‘ 
can be written as 

Cdm(k2r )  = ( I + R ~ )  exp[iklD sin w’-im(l.rr+w‘)]~,(klr) 

+m 

n=-m 

+(k: -k:)+iwCm ja r’dr’Jm(klr,)Hm(klr,)J, , ,(k2r‘) 
r ‘=O 

+$(k: -k;) r ’ d r ’ x  Kmm~Cm,Jm(klr)Jm,(klr’)Jm,(kzr’) (17) 
r ’ = O  m’ 

where 

= tan-’(-ipl/h) 

and the contour C is shown in figure 2. 
In the above integrations we use repeatedly the definite integral 

/02*d8 exp(-im8 + p l r  sin 8 +ihr cos 8) = 2KmJm(kl r )  exp(-im81). 

The integrals for r and r’ are computed easily using the well known relations for Bessel 
functions (Abramowitz and Stegun 1965). After some straightforward algebra equa- 
tion (17) reduces to 

CmKm(X1, X Z )  -E Kmm,Cm,Lmr(X1, XZ) 
m’ 
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X- plane 

Figure 2. Complex A plane for the integration in equation (18) 

The set of equations of the form (20) for -a < m < +a constitutes an infinite set of 
coupled equations which cannot be solved in general with existing mathematical 
techniques. Of course numerical techniques could be used to solve this system 
employing some truncation procedure to obtain a finite set of equations; instead we 
proceed using a Taylor expansion in ( X 2  - X l )  

(21) 

with analogous expansions for L,  and C,. Note that Km(0) = 2 and Lm(0) = 0. 
In the appendix the expressions for Km(i) ,  Lm(i)  (i = 1,2)  are given. Introducing the 

expansions of Km(X1 ,  X 2 ) ,  L m ( X 1 ,  X 2 )  and Cm into equation (20) and equating the 
terms of the same order, an iterative procedure is derived as 

(22) 

Km(x1, ~ 2 )  = K m ( 0 )  + (xz -x , )Km (1) + ( ~ 2  - x112~m(2)  + * . . 

c,(o) = (1 + ~ h )  exp[iklD sin w’-im(l.rr+w’)] 

Cm(l)= -$2,(0)Km(1)+$ Kmm,Cm,(0)Lmf(l) 
m‘ 

It should be noted that this procedure is valid when IX2 -X1/ < 1 since otherwise the 
expansions are slowly convergent. It is also necessary to compute the coupling integrals 
Kmm, as defined in equation (18). A numerical integration procedure is developed to 
compute these integrals. The following key points need to be taken into account. 

(i) In all of the above equations the square roots p1 and po should be defined 
appropriately so that the outgoing wave conditions (Collin 1960) for equations (3), (4) 
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and (6) are satisfied. This is achieved by choosing the appropriate branch cuts as 
described by Collin (1960) which are shown in figure 2. The branch cut for p I  are 
hyperbolae defined as Re@) Im(A) = Re(kl) Im(kl). Since Im(ko) = 0 the branch cut 
for po degenerates to a broken line as given in figure 2. The substitutions z = p l / A  and 
W = (1 + z)/(l -2) enable iol to be written from equation (19) as 

(25)  1 - 2 In( W ) .  
In figures 3(a), 3(b) and 3(c) the images of the contour C (figure 2) are shown for the z,  
W and idl complex planes respectively. It can be shown from figure 3 ( c )  that an 
appropriate branch cut for the function iol is the real positive axis of the W plane. 
Evaluating the inverse transformations W -P z and z -P A, the branch cuts in the A plane 
can be found to be straight lines originating from the points A = *kl and going to infinity 
along the lines arg(A) = 45" and -135". Accordingly, the functions p l ,  po and io1 are 

io -1 

I 

n 

IC1 

m (2) 

z plane 

w plane 

Figmre 3. Complex planes: ( a )  z plane, ( b )  w plane 
and ( c )  io1 plane. 
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defined exactly and the corresponding values on the contour C of the complex A plane 
are 

with 

and finally 

2 ,  z ,  81 =- &=- 1+z, 1 - 2 ,  
z = z ,  + iz, = (s /A) e'". 

(ii) The infinite upper and lower bounds for the integrals Km,g of equation (18) can 
be truncated easily since, as [A I + +a, the integrand function vanishes as exp(-2lA 10). 
A Simpson rule algorithm is adopted for the numerical computation of the integrals 
K m m  . 

4. Evaluation of the scattered field 

Let us assume that the interior field $(r) is known; then as a next step we consider the 
scattered field for y > 0. Substituting equation (13) into equation (12) and following an 
algebra similar to that of the previous section the field for the air region is obtained as 

where 

exp[-po(y -D)-pCLD+iAx -imO1] 
@ L + + O  

Z,,(r)=jcdA (30)  

for y > 0. For the far field region it is possible to evaluate this integral using the steepest 
descent approximation. To this end transform the integration variable A as 

A = -ko  cos p = -ko cos .$ cosh q +iko sin 6 sinh q 

where /? = e+ iq. Then the square root for po is defined as go = -ko sin p. This choice 
determines the regions of the p plane corresponding to the proper Riemann sheet of the 
p plane as shown in figure 4 (Collin 1960). Since po is an analytic function in the p 
plane no branch cuts are required for this function. The image of the branch cuts for the 
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Figure 4. Steepest descent integration. 

functions p1 and el in the p plane are shown in figure 4. The asymptotic values for the 
branch cuts iB1, as 77 + f m ,  are 

t + - T  a s q + + m  

and 

t + . r r + T  asq+--oO 

where tan(T) = kli/klr .  
The transformation of the contour C of the A plane is shown as C’. Following the 

standard procedure of the steepest descent approximation (Collin 1960, Jones 1964) 
the saddle points are determined to be 

or ps = T - rp and -cp, where rp = tan-’(y/x) is the direction for which the field is 
evaluated. The steepest descent contours (SDC) passing through these saddle points are 
determined from the exponential function of the integrand of equation (30) and the 
condition (Collin 1960) 

Im[ihx - p o y  - ikop cos(& + 9)] = Im{ikop[cos(p + rp) - cos(ps + 911) = 0 

or 

cos(5 + rp) cosh(7) = 71 (32) 
for pS = 7r - 9 and -9 respectively. Examination of the exp(ihx - p 0 y  ) term of equa- 
tion (30) shows that when y > O  only the steepest descent path passing through the 
saddle point pS = .rr - rp can be used to close the contour C’.  Proceeding further to the 
evaluation of the integral of equation (331, as a result of the Cauchy theorem we obtain 



468 N K Uzunoglu and J D Kanellopoulos 

where 

exp(iko sin P y  - iko cos P x )  
iko sin p Fm(P) = kosin P 2 1 2 -  exp(-imel) 

( k o  cos’ p - k r  ) ’ 
x exp{-D[iko sin P + (ki cos2 P - l ~ ; ) ” ~ ] } .  (34) 

T I ,  T2 and T3 are defined as in figure 4. Note that if the contour SDC does not intersect 
the branch cuts for iel or M~ the contribution from TI  vanishes. This occurs when 

- T < cp + + T. (35) 

It can be shown that the contribution of the contours T I ,  T2, T3 vanishes as )q 1 -+ +CO and 
p = (x2+ y2)*/2+ +CO (x # 0). Applying further the well known procedure for the 

Table 1. Scattering coefficients for crl = S m-’, P ~ / E Q  = 4, w = 90” and 50 MHz frequency 

m c:, (0)  C L i l ,  cl, (2) 

*l -0.288+0.533i 0.5 11 + 0.803i -0.740+ 1.36i 
*1 0.288-0.5331 0.106 + 0.3241 0.232-0.3221 

0 -0.288 +0.533i -0.715 - 0 .125  - 0.299 - 0.3833 

I I I I I I I 
1/4 

I 
0 36 12 108 

~p (deg) 

Figure 5. Scattering amplitude IU((p)l for various incident angles w and 30 and 50 MHz 
radiation frequencies for ground with c1 = = 4 and hollow cylindrical 
scatterers with kob = 0.5, koD = 1. 

S m-’, 
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evaluation of the steepest descent approximation (Collin 1960) we finally obtain 

where 

exd-iD[ko sin cp -i(kz cos2 cp - k7)"2]) 
Um(cp) = kosin cp 2 1 2 -  cos2 cp - k l )  ' iko sin cp 

(37) 

and el(&) is computed from equation (28). Substitution of equation (36) into equation 
(29) determines the far field as 

where the scattering amplitude is defined as 

xla2 
12- 

10- 

L 
I I I I I I I I  

0 36 72 108 144 
Q ldegl 

Figure 6. Scattering amplitude IV((p)I for 50MHz with ground parameters u1 = 
lo-' S m-l, E,, = 4, various incident angles o and scatterer parameters o2 = lo-' S m-', 
E , ~  = 3 , D  = 1 m, kob = 0.5. 
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5. Numerical results 

Numerical computations have been performed using the results of 06 3 and 4 when 
IX2-X11<1. For each specific scatterer case the convergence of the expansion in 
equation (25) is verified. In table 1 results are given for the scattering coefficients C,,,(i) 
(i = 0, 1 ,2 )  of a specific case. Numerical computations reveal that the number of partial 
waves to be taken into account, as in the free space scatterer case (Kerker 1969), is 
determined from the relative size parameter of the scatterer, i.e. IX2-X,I. Since it is 
assumed that IX2 -X1l < 1,  a small number of terms are sufficient to obtain convergence 
for the summation in equation (39). 

In figure 5 results are given for the scattering amplitude IV(cp)I of a hollow 
underground tunnel ( n 2  = 1) for various incident angles w and at 30 and 50 MHz 
frequencies. The scattering energy is concentrated towards the vertical (cp = 90") 
direction even for very small incident angles w. 

It should be noted that the presence of the lossy half-space medium destroys the 
conventional scattering pattern observed for free space scatterers. Instead of the well 
known Rayleigh scattering (IX, -X1l < 1) pattern-with a maximum echo in the 
backward and forward directions-the maximum electromagnetic energy emerges 
following the shortest path inside the ground. In figure 6 the scattering amplitude is 
shown as a function of the scattering angle cp for a lossy scatterer with conductivity 
c2 = S m-l and relative dielectric constant e 2 / e 0  = 3 embedded inside the ground 
with cr1 = S m-l and e1/e0 = 4 at 50 MHz. The general characteristics of the 
scattering patterns are similar to the previous case. 

The effect of scatterer depth is given in figure 7 where the scattering patterns are 
given for several depths (D)  of a hollow cylinder. The expected exponential attenua- 
tion for the scattered wave is verified. 

1 ° 3  I m  

I 1 
10 30 50 70 90 

v (deg) 

Figure 7. Scattering amplitude 1 U(,)[ for various hollow scatterer axis depths D, kob = 0.5, 
angle of incidence o = 90" and radiation frequency 30 MHz. 
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6. Conclusions 

An analytic procedure has been developed for the scattering of electromagnetic waves 
from underground cylindrical inhomogeneities. The case of small size IX,-X,l C 1 
scatterers was investigated in detail. In most practical cases this approximation is valid 
since the low-frequency side of the spectrum is usually employed for probing the ground 
environment. The analysis presents several analytical techniques that are necessary in 
the treatment of similar problems, i.e. scatterers inside a half-space lossy medium (see 
0 0  3 and 4). The scattered far field is computed in the air region by applying the steepest 
descent approximation technique. The maximum scattering energy is shown to be 
directed perpendicular to the ground surface almost independently of the value of the 
incidence angle. Finally it should be noted that a similar formulation can be used to 
treat problems such as three-dimensional scatterers and/or ground media with 
horizontally stratified layers. 

Appendix. Expressions for K,,, (l), K,,, (2), L m  (l), L m  (2) 

Starting from the defining equations (23) and (24) for j = 1, 2 and applying the 
differentiation and recurrence relations among Bessel functions the following expres- 
sions are obtained: 
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